A Priori Estimates for the Derivative Nonlinear Schrödinger Equation
نویسندگان
چکیده
We prove low regularity a priori estimates for the derivative nonlinear Schrödinger equation in Besov spaces with positive index conditional upon small L2-norm. This covers full subcritical range. use power series expansion of perturbation determinant introduced by Killip-Vi?an-Zhang completely integrable PDE. makes it possible to derive conservation laws from determinant.
منابع مشابه
A Priori Estimates for Solutions of a Nonlinear Dispersive Equation
In this work we obtain some a priori estimates for a higher order Schrödinger equation and in particular we obtain some a priori estimates for the modified Korteweg-de Vries equation.
متن کاملDirect perturbation theory for solitons of the derivative nonlinear Schrödinger equation and the modified nonlinear Schrödinger equation.
A direct perturbation theory for solitons of the derivative nonlinear Schrödinger (DNLS) equation is developed based on a closure of eigenfunctions of the linearized DNLS equation around a one-soliton solution. The slow evolution of soliton parameters and the perturbation-induced radiation are obtained. Under the known simple gaugelike transformation, these results are transformed into those fo...
متن کاملṕ Estimates for the Schrödinger Equation on the Line and Inverse Scattering for the Nonlinear Schrödinger Equation with a Potential ∗
In this paper I prove a L − L estimate for the solutions of the one–dimensional Schrödinger equation with a potential in Lγ where in the generic case γ > 3/2 and in the exceptional case (i.e. when there is a half–bound state of zero energy) γ > 5/2. I use this estimate to construct the scattering operator for the nonlinear Schrödinger equation with a potential. I prove moreover, that the low–en...
متن کاملExact Multisoliton Solutions of General Nonlinear Schrödinger Equation with Derivative
Multisoliton solutions are derived for a general nonlinear Schrödinger equation with derivative by using Hirota's approach. The dynamics of one-soliton solution and two-soliton interactions are also illustrated. The considered equation can reduce to nonlinear Schrödinger equation with derivative as well as the solutions.
متن کاملStroboscopic Averaging for the Nonlinear Schrödinger Equation
In this paper, we are concerned with an averaging procedure, – namely Stroboscopic averaging [SVM07, CMSS10] –, for highly-oscillatory evolution equations posed in a (possibly infinite dimensional) Banach space, typically partial differential equations (PDEs) in a high-frequency regime where only one frequency is present. We construct a highorder averaged system whose solution remains exponenti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Funkcialaj Ekvacioj
سال: 2022
ISSN: ['0532-8721']
DOI: https://doi.org/10.1619/fesi.65.329