A Priori Estimates for the Derivative Nonlinear Schrödinger Equation

نویسندگان

چکیده

We prove low regularity a priori estimates for the derivative nonlinear Schrödinger equation in Besov spaces with positive index conditional upon small L2-norm. This covers full subcritical range. use power series expansion of perturbation determinant introduced by Killip-Vi?an-Zhang completely integrable PDE. makes it possible to derive conservation laws from determinant.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Priori Estimates for Solutions of a Nonlinear Dispersive Equation

In this work we obtain some a priori estimates for a higher order Schrödinger equation and in particular we obtain some a priori estimates for the modified Korteweg-de Vries equation.

متن کامل

Direct perturbation theory for solitons of the derivative nonlinear Schrödinger equation and the modified nonlinear Schrödinger equation.

A direct perturbation theory for solitons of the derivative nonlinear Schrödinger (DNLS) equation is developed based on a closure of eigenfunctions of the linearized DNLS equation around a one-soliton solution. The slow evolution of soliton parameters and the perturbation-induced radiation are obtained. Under the known simple gaugelike transformation, these results are transformed into those fo...

متن کامل

ṕ Estimates for the Schrödinger Equation on the Line and Inverse Scattering for the Nonlinear Schrödinger Equation with a Potential ∗

In this paper I prove a L − L estimate for the solutions of the one–dimensional Schrödinger equation with a potential in Lγ where in the generic case γ > 3/2 and in the exceptional case (i.e. when there is a half–bound state of zero energy) γ > 5/2. I use this estimate to construct the scattering operator for the nonlinear Schrödinger equation with a potential. I prove moreover, that the low–en...

متن کامل

Exact Multisoliton Solutions of General Nonlinear Schrödinger Equation with Derivative

Multisoliton solutions are derived for a general nonlinear Schrödinger equation with derivative by using Hirota's approach. The dynamics of one-soliton solution and two-soliton interactions are also illustrated. The considered equation can reduce to nonlinear Schrödinger equation with derivative as well as the solutions.

متن کامل

Stroboscopic Averaging for the Nonlinear Schrödinger Equation

In this paper, we are concerned with an averaging procedure, – namely Stroboscopic averaging [SVM07, CMSS10] –, for highly-oscillatory evolution equations posed in a (possibly infinite dimensional) Banach space, typically partial differential equations (PDEs) in a high-frequency regime where only one frequency is present. We construct a highorder averaged system whose solution remains exponenti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Funkcialaj Ekvacioj

سال: 2022

ISSN: ['0532-8721']

DOI: https://doi.org/10.1619/fesi.65.329